PACKET HEADER GENERATION AND **DETECTION CIRCUITRY** ## BACKGROUND OF THE INVENTION The present invention is related generally to receivers for acquiring radio-frequency signals and, particularly, to receivers for acquiring data from signals which may have been transmitted in a spread spectrum system. Wireless systems have been developed and proposed in 10 the prior art in which plural radio frequency ("RF") transmitters send bursts of messages to a receiver which must acquire the signal from each transmitter and decode the data contained therein. For example, in a wireless Local Area Network ("LAN") plural nodes which are not necessarily 15 geolocated together may each communicate with a base station (or even with each other) and transmit data to and from the base station for the use by applications located at the nodes. Because the system is wireless, the transmissions are made using the ether. In simple systems, a base station may be able to communicate with only a single remote node during any given time period. Obviously, such an arrangement limits the amount of data which can be passed between the nodes and the base station in a given period of time. To increase the amount of data which may be transmitted, it is known for a wireless system to use plural distinct frequencies the use of which is arbitrated or determined by the system. In this way, several remote nodes may be transmitting to or receiving data from the base station simultaneously. Such systems tend to use a relatively large bandwidth of the available spectrum and are relatively expensive in forcing the base station to have plural transceivers and for the nodes to be capable of communicating on plural frequencies. In addition, in such prior art systems, the allocarelatively large portion of the available processing resources and degrade the ability of the system to communicate data. In still other prior art systems, the various nodes and the base station may use a time-division multiplex protocol in which a base unit allots periods of time to nodes requiring data communications and controls the communication by the nodes during the assigned time periods. Again, the overhead in processing resources needed to manage the system and the consumption of communication resources by control messages may be relatively high for such systems. Another means by which plural remote nodes may communicate with a base station or other nodes is the use of PN-encoded spread spectrum technology. In a typical spread spectrum signal, the signal to be transmitted is modulated with a pseudorandom noise ("PN") code. Demodulating 50 such a signal generally involves the demodulating of a received signal by the same PN code as was used to modulate the signal. Once the signal is demodulated, it may be correlated to ensure that an actual signal was present, and subsequently demodulated/decoded to extract the data. One 55 of the benefits of such spread spectrum systems is that multiple nodes may be simultaneously transmitting without necessarily destroying each other's signals. Thus, some of the inter-nodal timing problems of other prior art systems are reduced. The use of such spread spectrum systems is also often beneficial to the ability of the receiver to acquire and decode the signal in high noisy environments. In spread spectrum signal communications, as in many wireless communications systems, it is often desirable to communicate between nodes and the base station in short, 65 bursty packets of data. Bursty communications generally permits many nodes (which often have bursty communica- tions needs) to be joined in a system without significant degradation at any one node, i.e., each node receives an opportunity to communicate within a desired latency period. Thus, in some communications systems, it is desirable to have messages be relatively short to ensure that each node has an opportunity to communicate within an acceptable latency period. Typical spread spectrum messages generally include a data portion containing the data to be transmitted preceded by a preamble or header portion used for synchronization of the receiver to the signal being transmitted and a check portion (often a Cyclical Redundancy Check, CRC) which provides signals whereby the correctness of the decoded message may be determined. Particularly when data messages are desired to be bursty, and thus short, the length of the preamble may be significant in determining the data bandwidth of the system or the amount of data which can be communicated within a particular period of time. Generally, the smaller the preamble for a system having a particular speed, the greater is the available data bandwidth. Short preambles, however, generally provide the receiver with less information on which to synchronize. In a typical wireless LAN using bursty communications, the system can be characterized as having multiple bursts from various transmitters, each of which must be acquired and decoded by the receiver. The problems of acquiring such signals is made all the more difficult if, as is sometimes the case, the plural nodes provide communication signals having varying signal strengths and signal to noise ratios and if the start of the communications from the various nodes is not synchronous. Often in such wireless LAN systems, the receiver has no apriori knowledge of the time of the start of a communication, or the particular off-nominal characteristics of the sending node. Each sending node, for example, tion of frequencies for communications may consume a 35 may have a different frequency offset or frequency drift which affects how its signal must be acquired and/or decoded. > In prior art systems, baseband processors were typically used to extract data from PN modulated spread spectrum signals (and to modulate a signal to be transmitted with PN modulation). Typical prior art baseband processors used a symbol length matched filter correlator, with the output acquired by a phase locked loop, to remove the offset frequency of the carrier. In such systems, the matched filter is set to match the PN code sequence used for the spread spectrum link. Generally, in such prior arts systems, acquisition of the signal is declared based on the amplitude of the correlation output peaks from the matched filter. The disadvantage of this typical prior art approach is that the phase locked loop is relatively slow and may have large amounts of jitter if the signal is near the noise level. If the presence of the signal is falsely declared on the basis of the noise, the desired signal may be rejected. In addition, the slow acquisition may preclude the use of a diversity of antennas, particularly where the message preamble is relatively short in duration. In some prior art systems, plural parallel receive paths are used for the diverse antennae so that each antenna may be evaluated in parallel. Obviously, such duplication of elements is relatively expensive in terms of cost, power and Another aspect which influences the design and operation of prior art baseband processors involves the A/D sampling of the baseband signal. A low cost direct sequence baseband demodulator utilizes as few bits as possible in the A/D sampling converter used to sample the I and Q signals while maintaining acceptable system performance. Each bit of an additional A/D flash converter approximately doubles the